
Sains Malaysiana 39(6)(2010): 1031–1034  

A Description of an Automorphism of a Split Metacyclic p-group
(Pemerihalan Tentang Automorfisme bagi Kumpulan-p Metakitaran Belahan)

IDHAM ARIF ALIAS*

ABSTRACT

A map on a group is not necessarily an automorphism on the group. In this paper we determined the necessary and 
sufficient conditions of a map on a split metacyclic p-group to be an automorphism, where we only considered p as 
an odd prime number. The metacyclic group can be defined by a presentation and it will be beneficial to have a direct 
relation between the parameters in the presentation and an automorphism of the group. We considered the action of an 
automorphism on the generators of the group mentioned. Since any element of a metacyclic group will be mapped to an 
element of the group by an automorphism, we can conveniently represent the automorphism in a matrix notation. We 
then used the relations and the regularity of the split metacyclic p-group to find conditions on each entry of the matrix 
in terms of the parameters in its presentation so that such a matrix does indeed represent an automorphism.
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ABSTRAK

Satu pemetaan bagi suatu kumpulan tidak semestinya merupakan suatu automorfisme bagi kumpulan tersebut. Dalam 
makalah ini kami mengkaji syarat-syarat cukup dan perlu bagi suatu pemetaan kumpulan-p metakitaran belahan untuk 
menjadi satu automorfisme, dan kami hanya mengambilkira p sebagai suatu nombor perdana ganjil sahaja. Suatu 
kumpulan metakitaran boleh ditakrifkan dengan suatu pembentangan dan adalah bagus sekiranya terdapat satu kaitan 
terus di antara parameter-parameter di dalam pembentangan berkenaan dengan sebarang automorfisme kumpulan 
tersebut. Kami mengambilkira tindakan suatu automorfisme terhadap penjana-penjana kumpulan yang disebutkan. 
Disebabkan sebarang unsur kumpulan metakitaran tersebut akan dipetakan kepada suatu unsurnya, automorfisme 
berkenaan boleh diwakilkan dengan suatu simbol berbentuk matriks. Kami kemudiannya menggunakan hubungan dan 
kenalaran suatu kumpulan-p metakitaran belahan untuk mencari syarat-syarat bagi setiap pemasukan matriks berkenaan 
dalam sebutan parameter-parameter di dalam pembentangan kumpulan tersebut supaya matriks sedemikian mewakili 
suatu automorfisma.

Kata kunci: Automorfisma; kumpulan-p metakitaran belahan; perwakilan matriks

INTRODUCTION

A metacyclic group G  is a group which has a cyclic normal 
subgroup N  such that G/N is also a cyclic group. If P is a 
metacyclic p-group where p is a prime number, then the 
presentation of P can be written as

 P= <x, y | xpm=1, ypt= xpq , yxy−1=x1+pn>  (1)

where the parameters m, t, q and n satisfy some conditions 
as written by King (1973). 
 Some examples of metacyclic groups are cyclic 
groups, direct product of two cyclic groups, dihedral 
groups and all finite groups whose Sylow subgroups are 
cyclic. Subgroups and quotients of metacyclic groups are 
also metacyclic. A metacyclic p-group is called split if it 
has a cyclic normal subgroup with a cyclic complement, 
and non-split otherwise. For example, dihedral p-groups 
are split metacylic p-groups and the quaternion group is 
non-split.

 Bidwell and Curran (2006) have studied the 
automorphism group of a split metacyclic p-group. They 
used a similar approach to that of a previous paper by 
Bidwell et al. (2006) where they found the automorphism 
group of a direct product. In this paper we use a more direct, 
computational approach by considering the action of an 
automorphism on the generators of a metacyclic p-group. 
We define any map on the group P by ϕ(x)= xiyj and ϕ (y)= 
xrys , and subsequently represent ϕ by the matrix notation 

 and write ϕ ~  as written by Schulte (2001). 

We use the relations of the group and its regularity to find 
conditions on integers i, j, r and s in terms of parameters in 
the presentation of P as in (1). We are able to confirm that 
the conditions are sufficient from the result of Menegazzo 
(1993) regarding the order of the automorphism group 
Aut(P) of a split metacyclic p-group P for an odd prime 
p.      This approach is computational but gives a picture of the 
automorphism group that we find helpful for further work 
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on the Sylow p-subgroup of the automorphism group. In 
further work we will find a simple structure for the Sylow 
p-subgroup and by finding its upper central series, will 
determine its nilpotency class.
 This paper will focus on the split case, that is when 
q≥ m and when p is an odd prime. We observe from King 
(1973) that the split case can be divided into three cases 
(the work of Schulte (2001) is a particular example of one 
of these three). By Theorem 3.2 in King’s paper (1973) 
we have the inequality 0 ≤ m−n <min {t+1,m} and so, 0 ≤ 
m−n <t+1 ≤m or 0 ≤ m−n <m <t+1 where the former gives 
m ≥ n, m−n ≤ t and t<m(we take m >n for non-abelian P). 
It follows that 1 ≤t ≤ n <m ≤ n+t or 1 ≤ n<t <m ≤ n+t.
 Similarly 0 ≤ m−n <m <t+1 implies m >n and m−n 
<m (which is obvious) and m ≤ t so that 1 ≤ n <m ≤ t. To 
summarise these, we break up into three cases:
 Case 1: 1 ≤ t ≤ n < m ≤ n+t
 Case 2: 1 ≤ n <m ≤ t and
 Case 3: 1 ≤ n <t ≤ m ≤ n+t.

 Before we proceed, we observe that from the first and 
the second relations in (1), we consider i and r as integers 
modulo pm while j and s are considered as modulo pt. The 
third relation in the presentation above implies that any 
element of P can be written uniquely in the form xuyv, 
where 0 ≤u< pm and 0 ≤v< pt.

PRELIMINARIES

We start with some necessary results which will be used 
throughout this paper.

Lemma 2.1 For any g1, g2 ∈ P and k ≥m−n ≥1, (g1g2)
pk = 

g1 
pk g2 

pk.

Proof. The proof is straightforward using the fact that the 
metacyclic p-group is a regular group. 
 From the third relation in (1) we have yx= x1+ pny. We 
now put α = 1 + pn so that yx= xαy. Note that α will have 
this meaning throughout this paper.

Lemma 2.2 Let x, y be the generators of P and u, v be 
integers with v > 0. Then yvxu = xuαvyv.

Proof. This result follows from the third relation in P which 
is yx= x1+pny. 
 Before we proceed we need the following definition.

Definition 2.1 Let u > 0 and v > 1. Then we define Λ(u,v) 
= 1+ αu+ α2u+ . . . + α(v−1)u such that Λ(u,1) = 1.
 The following lemma is the result of direct 
calculation.

Lemma 2.3 Let u > 0 and v > 1. Then Λ(u,v) ≡ v+ 
2−1uv(v−1)pn(mod p2n) and hence Λ(u,v) ≡ v(mod p).
 We will need to be able to write a power of (xuyv) as a 
product of a power of x and a power of y. The proof will 
use induction.

Lemma 2.4 If x and y are the generators of P, u is any 
integer, v >0 and w >1 then (xuyv)w= xuΛ(v, w)yvw.

Proof. For u = 0 the result is trivial.
 Consider u >0. For w = 1 the result is clear. Assume 
the result is true for w – 1. Then (xuyv)w= (xuyv)w−1xuyv= xuΛ(v, 

w−1)yv(w−1)xuyv = xuΛ(v, w−1)xuαv(w−1)yvw = xuΛ(v, w)yvw.
By induction the result is true for integers w .
 For u <0 the same proof applies with u replaced by 
–u’ for a positive integer u’. 
 At times we need quite precise information about the 
smallest power of p dividing terms in binomial coefficients. 
This is the reason for the following series of lemmas and 
corollaries. We use the notation pk || c to indicate that pk 
divides c but pk+1 does not divide c.

Lemma 2.5 Let p∈ || w where ∈ >0. If 2 ≤ k ≤ w then the 

power of p dividing pku is at least p∈+2u for all u ≥1.

Proof. We first consider the case 2 ≤ k < p∈.
 Write k=lpv for a positive integer l where (l, p) = 1. 
It is clear that the power of p dividing k is the same as the 
power of p dividing w – k, so that the power of p dividing 
(k – 1)! is the same as that dividing (w – 1)(w – 2) . . . (w – 
k + 1). Now since k < p∈ we have v < ∈. Hence the power 
of p dividing 

 

is p∈−v+ku. 
 If v = 0 then the proof is complete since ∈ +ku ≥ ∈ + 
2u for 2 ≤ k < p∈.
 For v ≠0, since u ≥1 and lpv ≥2+v for p ≥3 then

∈−v+ku= ∈−v+lpvu= ∈+2u+(lpv− 2)u−v ≥ ∈ +2u.

This completes the proof for the case 2 ≤ k < p∈.
We now consider the case k ≥ p∈.
 It is enough to observe that ku ≥ p∈u ≥(∈+2)u ≥ ∈+2u 

since p∈ ≥ ∈+2 for p ≥3. Hence p∈+2u divides pku for k 
≥ p∈. 

Corollary 2.6 If p∈ || w for w ≥ 2 and u and c are integers 
with u ≥1, (c,p)= 1, then for some integer k

 (1+cpu)w = 1 + cwpu+ kp∈ +2u.

As a special case of the previous corollary we have

Corollary 2.7 pn+k || (αpk− 1) for all integers k ≥ 0.

Lemma 2.8 Let ϕ be an automorphism of P where ϕ ~ 
. If x, y are generators of P and m, n are parameters 

in the presentation (1) of P then
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 x r+iαs–rαjyj = xi(Λ(j, pn)+αjpn
)yjα,

In particular, if m ≤ 2n then by Lemma 2.3 and Corollary 
2.7,

 xr+iαs–rαjyj= xiαyjα.

Proof. These results are derived by applying the 
automorphism ϕ to both sides of the relation yxy−1=x1+pn 

and using the Lemmas 2.1, 2.2 and 2.4. 

Lemma 2.9 If ϕ ∈ Aut(P) where ϕ ~  then is – rj is 
not congruent to zero modulo p.

Proof. Since P is a 2-generator group, P/Φ(P)≅ Zp × Zp, 
and ϕ defines an automorphism on P/Φ(P) with matrix 

, where i, j, r and s are taken modulo p. The matrix 

is thus in GL(2, p) and so is – rj is not congruent to zero 
modulo p. 

MAIN RESULT

The following proposition is our main result. We note that 
U(pm) denotes the set of units in Zpm. 

Proposition 3.1 Let P be a split metacyclic p-group and ϕ 

is a map on P which is represented by ϕ ~ . Then ϕ 
∈Aut(P) if and only if 

Case 1: r ≡ 0 (mod pm–t), i ∈ U(pm), s ≡1 (mod pm–n), 
j ∈ Zpt or

Case 2: r ∈ Zpm, i ∈U(pm), s ≡1 (mod pm−n), j ≡ 0 (mod 
pt−n) or

Case 3: r ≡ 0 (mod pm−t), i ∈U(pm), s ≡ 1 (mod pm−n), 
j ≡ 0 (mod pt−n).

Proof.
 We will do the proof by each case and as before, we 
write ϕ(x)= xiyj and ϕ(y)= xrys where i, r are taken modulo 
pm and j, s are taken modulo pt.
 Consider ϕ ∈Aut(P).

CASE 1:
 1 = ϕ(1)= ϕ(ypt)= (xrys)pt= (xr)pt(ys)pt= (xr)pt where t ≥ 
m−n in this case. Thus we have rpt ≡ 0 (mod pm) or r ≡ 0 
(mod pm−t).
 Now by Lemma 2.9, is−rj is not congruent to zero 
modulo p. But r ≡ 0 (mod pm−t) implies r ≡ 0 (mod p) and 
thus is, is not congruent to zero modulo p and so i is not 
congruent to zero modulo p. Since i ∈ Zpm, we have i ∈ 
U(pm) as there is no further information on value of i.
 Now by Lemma 2.8, xr+iαs−rαjyj= xiαyjα where n>m−n 
and n ≥ t in this case. Hence r+iαs− rαj ≡iα (mod pm) or 
r(1− αj) ≡i(α− αs)(mod pm). Now since α ≡1 (mod pn), we 
have αj ≡1 (mod pn) ≡ 1 (mod pt) and so r(1− αj) ≡ 0 (mod 

pm). Thus i(α− αs) ≡ 0 (mod pm) and since i is not congruent 
to zero modulo pm, it follows that α≡ αs (mod pm).
 Now since (α, pm)= 1, we can say that α ∈U(pm) so that 
α−1 exists in modulo pm which implies αs−1 ≡1 (mod pm). By 
Corollary 2.7, pn+m−n || (αpm−n− 1) and hence αpm−n ≡1 (mod 
pm) so that the order of α in U(pm) is pm−n. It follows that 
pm−n | (s− 1) and thus s ≡1 (mod pm−n) where in this case 
m−n ≤ t.
 Finally since there are no limits on j except that its 
values are evaluated modulo pt, we can consider j ∈ Zpt.
 These gives the necessity of the conditions for Case 
1.

CASE 2:
 By Lemma 2.8, xr+iαs−rαjyj= xi(Λ(j, pn)+ αjpn

)yjα which 
implies r+iαs−rαj ≡ i(Λ(j, pn)+ αjpn) (mod pm) and j ≡ jα 
(mod pt).
 Now j(1− α) ≡ 0 (mod pt) so that j(−pn) ≡ 0 (mod pt) 
or j ≡ 0 (mod pt−n).
 Now by Lemma 2.9, is – rj is not congruent to zero 
modulo p. But j ≡ 0 (mod pt−n) implies j ≡ 0 (mod p). Thus is 
is not congruent to zero modulo p so that i is not congruent 
to zero modulo p. Since i ∈ Zpm, we have i ∈ U(pm) as there 
is no further information on value of i.
 In addition, r−rαj ≡ i(Λ(j, pn)+ αjpn− αs) (mod pm)  
from above. Now by Corollary 2.7, pn+t−n || (αpt−n− 1) so 
that αpt−n ≡ 1 (mod pt). Since j ≡ 0 (mod pt−n), we have αj 
≡1 (mod pt) ≡ 1 (mod pm) because m ≤ t in this case. Thus 
Λ(j, pn) = 1+ αj+ α2j+ . . . + α(pn−1)j ≡ pn (mod pm). Also 
αjpn ≡1 (mod pm) and hence, r(1− αj) ≡ i (pn+1–αs)(mod 
pm) which implies 0 ≡i(α− αs) (mod pm).
 By a similar argument as in Case 1, αs−1 ≡1 (mod pm) 
and by Corollary 2.7, pn+m−n || (αpm−n− 1) so that αpm−n ≡1 
(mod pm) and order of α in U(pm) is pm−n. Hence pm−n | (s− 
1) which gives s ≡1 (mod pm−n) where in this case m−n ≤ 
t since m ≤ t.
 Finally since there are no limits on r except that its 
values are evaluated modulo pm, we can consider r ∈ 
Zpm.
 These gives the necessity of the conditions for Case 
2.

CASE 3:
As in Case 1, since t ≥m−n, we have r ≡0 (mod pm−t). Then 
i ∈U(pm) will be proved either as in Case 1 or 2.
 Also as in Case 2 the proof is the same to have j ≡0 
(mod pt−n) as well as r(1− αj)≡ i(Λ (j,pn)+αjpn− αs)(mod 
pm) and αj ≡ 1 (mod pt).
 Now since r ≡ 0 (mod pm−t) and (1− αj) ≡0 (mod pt), 
we have r(1− αj) ≡ 0(mod pm). 
 Also since j ≡ 0 (mod pt−n) so that jpn ≡ 0 (mod pt), by 
using Corollary 2.7 we have αjpn ≡1 (mod pn+t) ≡1 (mod 
pm) because m ≤ n+t. Now for 1 ≤ k ≤ pn−1 by Corollary 
2.6, αkj ≡1+kjpn (mod pn+t) and thus 
 

Λ(j, pn) = 1+ αj+ α2j+ . . . + α(pn–1)j

≡1+(1+jpn)+ (1+2jpn)+…+(1+(pn−1)jpn)(mod pn+t)
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 ≡ pn+ 2−1jpn(pn)(pn− 1) (mod pn+t)
 ≡ pn (mod pn+t) (since jpn (pn) ≡ 0 (mod pn+t)
 ≡ pn (mod pm) (since m ≤ n+t).

 As in previous case, αs−1 ≡1 (mod pm) and by a similar 
argument as in Case 2 we have s ≡ 1 (mod pm-n)
 These give the necessity of the conditions for Case 3.
Now we show that the condition of the theorem are 
sufficient by calculating the number of distinct mappings 
allowed by this condition, in each case.

CASE 1:
Since r ≡ 0 (mod pm−t), i ∈ U(pm), s ≡1 (mod  pm−n) and j ∈ 
Zpt, the number of choices for each parameter is as in the 
following table: 

Parameter Choice

r pt

i pm−1(p−1)
s pt+n−m

j pt

 Therefore the number of distinct mappings allowed is 
p3t+n−1(p−1) which is also the order of the automorphism 
group Aut(P) of P by Menegazzo (1993).

CASE 2:
Since r ∈ Zpm, i ∈U(pm), s ≡1 (mod pm−n) and j ≡ 0 (mod 
pt−n), the number of choices for each parameter is as in the 
following table: 

Parameter Choice

r pm

i pm−1(p−1)
s pt+n−m

j pn

 Therefore the number of distinct mappings allowed 
is pt+m+2n−1(p−1) which is also the order of Aut(P) by 
Menegazzo (1993).

CASE 3:
Since r ≡ 0 (mod pm−t), i ∈ U(pm), s ≡1 (mod pm−n) and j ≡ 0 
(mod pt−n), the number of choices for each parameter is as 
in the following table: 

Parameter Choice

r pt

i pm−1(p−1)
s pt+n−m

j pn

 Therefore the number of distinct mappings allowed 
is p2t+2n−1(p−1) which is also the order of Aut(P) by 
Menegazzo (1993). 

CONCLUSION

In this paper we have found the necessary and sufficient 
conditions for a map of a split metacyclic p-group where p 
is an odd prime number, to be an automorphism. This result 
is beneficial since it is directly related to the parameters in 
the presentation of the metacyclic group.
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